skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "DeHolton, K Leonard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The nature of dark matter remains unresolved in fundamental physics. Weakly Interacting Massive Particles (WIMPs), which could explain the nature of dark matter, can be captured by celestial bodies like the Sun or Earth, leading to enhanced self-annihilation into Standard Model particles including neutrinos detectable by neutrino telescopes such as the IceCube Neutrino Observatory. This article presents a search for muon neutrinos from the center of the Earth performed with 10 years of IceCube data using a track-like event selection. We considered a number of WIMP annihilation channels ($$\chi \chi \rightarrow \tau ^+\tau ^-$$ χ χ τ + τ - /$$W^+W^-$$ W + W - /$$b\bar{b}$$ b b ¯ ) and masses ranging from 10 GeV to 10 TeV. No significant excess over background due to a dark matter signal was found while the most significant result corresponds to the annihilation channel$$\chi \chi \rightarrow b\bar{b}$$ χ χ b b ¯ for the mass$$m_{\chi }=250$$ m χ = 250  GeV with a post-trial significance of$$1.06\sigma $$ 1.06 σ . Our results are competitive with previous such searches and direct detection experiments. Our upper limits on the spin-independent WIMP scattering are world-leading among neutrino telescopes for WIMP masses$$m_{\chi }>100$$ m χ > 100  GeV. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract We report a search for high-energy astrophysical neutrino multiplets, detections of multiple neutrino clusters in the same direction within 30 days, based on an analysis of 11.4 yr of IceCube data. A new search method optimized for transient neutrino emission with a monthly timescale is employed, providing a higher sensitivity to neutrino fluxes. This result is sensitive to neutrino transient emission, reaching per-flavor flux of approximately 1 0 10 erg cm 2 s 1 from the Northern Sky in the energy rangeE ≳ 50 TeV. The number of doublets and triplets identified in this search is compatible with the atmospheric background hypothesis, which leads us to set limits on the nature of neutrino transient sources with emission timescales of one month. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  3. Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Neutrino oscillations at the highest energies and longest baselines can be used to study the structure of spacetime and test the fundamental principles of quantum mechanics. If the metric of spacetime has a quantum mechanical description, its fluctuations at the Planck scale are expected to introduce non-unitary effects that are inconsistent with the standard unitary time evolution of quantum mechanics. Neutrinos interacting with such fluctuations would lose their quantum coherence, deviating from the expected oscillatory flavour composition at long distances and high energies. Here we use atmospheric neutrinos detected by the IceCube South Pole Neutrino Observatory in the energy range of 0.5–10.0 TeV to search for coherence loss in neutrino propagation. We find no evidence of anomalous neutrino decoherence and determine limits on neutrino–quantum gravity interactions. The constraint on the effective decoherence strength parameter within an energy-independent decoherence model improves on previous limits by a factor of 30. For decoherence effects scaling as E2 , our limits are advanced by more than six orders of magnitude beyond past measurements compared with the state of the art. 
    more » « less
  5. Abstract The IceCube Neutrino Observatory has been continuously taking data to search for O ( 0.5 10 ) s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the O ( 10 ) MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum. 
    more » « less
  6. Abstract The LIGO/Virgo collaboration published the catalogs GWTC-1, GWTC-2.1, and GWTC-3 containing candidate gravitational-wave (GW) events detected during its runs O1, O2, and O3. These GW events can be possible sites of neutrino emission. In this paper, we present a search for neutrino counterparts of 90 GW candidates using IceCube DeepCore, the low-energy infill array of the IceCube Neutrino Observatory. The search is conducted using an unbinned maximum likelihood method, within a time window of 1000 s, and uses the spatial and timing information from the GW events. The neutrinos used for the search have energies ranging from a few GeV to several tens of TeV. We do not find any significant emission of neutrinos, and place upper limits on the flux and the isotropic-equivalent energy emitted in low-energy neutrinos. We also conduct a binomial test to search for source populations potentially contributing to neutrino emission. We report a nondetection of a significant neutrino-source population with this test. 
    more » « less
  7. Abstract The Galactic plane, harboring a diffuse neutrino flux, is a particularly interesting target in which to study potential cosmic-ray acceleration sites. Recent gamma-ray observations by HAWC and LHAASO have presented evidence for multiple Galactic sources that exhibit a spatially extended morphology and have energy spectra continuing beyond 100 TeV. A fraction of such emission could be produced by interactions of accelerated hadronic cosmic rays, resulting in an excess of high-energy neutrinos clustered near these regions. Using 10 years of IceCube data comprising track-like events that originate from charged-current muon neutrino interactions, we perform a dedicated search for extended neutrino sources in the Galaxy. We find no evidence for time-integrated neutrino emission from the potential extended sources studied in the Galactic plane. The most significant location, at 2.6σpost-trials, is a 1.°7 sized region coincident with the unidentified TeV gamma-ray source 3HWC J1951+266. We provide strong constraints on hadronic emission from several regions in the galaxy. 
    more » « less
  8. Abstract The IceCube Neutrino Observatory sends realtime neutrino alerts with a high probability of being astrophysical in origin. We present a new method to correlate these events and possible candidate sources using 2089 blazars from the Fermi-LAT 4LAC-DR2 catalog and with 3413 active galactic nuclei (AGNs) from the Radio Fundamental Catalog. No statistically significant neutrino emission was found in any of the catalog searches. The result suggests that a small fraction, <1%, of the studied AGNs emit neutrinos that pass the alert criteria, and is compatible with prior evidence for neutrino emission presented by IceCube and other authors from sources such as TXS 0506 + 056 and PKS 1502 + 106. We also present cross-checks to other analyses that claim a significant correlation using similar data samples. 
    more » « less
  9. Abstract Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p -value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 10 48 erg for stripped-envelope supernovae, 2.8 × 10 48 erg for type IIP, and 1.3 × 10 49 erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 10 3 –10 5 ] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions. 
    more » « less